Login / Signup

Phox2B is a sensitive and reliable marker of paraganglioma-Phox2B immunohistochemistry in diagnosis of neuroendocrine neoplasms.

Monika ManethovaLucie GerykovaHana FaistovaJan DrugdaMaria HacovaHelena HornychovaAles RyskaFilip GabalecJiri Soukup
Published in: Virchows Archiv : an international journal of pathology (2023)
Phox2B is a transcription factor responsible for chromaffin cell phenotype. Although it is used routinely for diagnosis of neuroblastoma, previous reports concerning its utility in the diagnosis of neuroendocrine neoplasms have been conflicting. We assessed Phox2b immunoreactivity in different neuroendocrine neoplasms. Tissue microarrays or whole sections of 36 paragangliomas (PGs), 91 well-differentiated neuroendocrine tumours of different organs (WDNETs), 31 neuroendocrine carcinomas (NECs), and 6 olfactory neuroblastomas (ONBs) were stained with Phox2B antibody (EP312) and GATA3. The percentage of positive cells and intensity was analysed using H-score. Phox2B immunoreactivity was seen in 97.2% (35/36) PGs, 11% (10/91) WDNETs, 9.7% (3/31) NECs, and 16.7% (1/6) ONBs. PGs were significantly more often positive (p < 0.001, χ 2 ) than other neuroendocrine tumours, showing highest H-score (mean 144.9, SD ± 75.1) and percentage of positive cells (median 81.3%, IQR 62.5-92.5%). Compared to Phox2B-positive WDNETs, PGs showed significantly higher H-score (median 145 vs 7.5, p < 0.001) and percentage of positive cells (median 82.5% vs 4.5%, p < 0.001). Phox2B positivity was 97.2% sensitive and 89% specific for the diagnosis of PG. GATA3 was 100% sensitive and 88% specific for the diagnosis of PG. When combined, any Phox2B/GATA3 coexpression was 97.1% sensitive and 99.1% specific for the diagnosis of paraganglioma. Widespread Phox2B immunoreactivity is a highly characteristic feature of PGs and it can be used as an additional marker in differential diagnosis of neuroendocrine tumours.
Keyphrases
  • transcription factor
  • induced apoptosis
  • cell cycle arrest
  • machine learning
  • emergency department
  • stem cells
  • oxidative stress
  • endoplasmic reticulum stress
  • mesenchymal stem cells
  • cell therapy
  • high grade