Catalytic Asymmetric Construction of Chiral Amines with Three Nonadjacent Stereocenters via Trifunctional Catalysis.
Cheng ChengYang YuYuhong GaoYi-Pan LiXiang-Lei HanJisheng LuoLi DengPublished in: Journal of the American Chemical Society (2024)
Pharmaceuticals and biologically active natural products usually contain multiple stereocenters. The development of catalytic asymmetric reactions for the direct construction of complex motifs containing three nonadjacent stereocenters is a particularly important and formidable challenge. In this paper, we report an unprecedented method for the direct asymmetric construction of complex chiral amines with 1,3,5- or 1,3,4-stereocenters from readily available achiral and racemic starting materials. The reaction was made possible by the development of highly efficient chiral ammonium catalysts that serve three distinct functions: promoting efficient kinetic resolution by chiral recognition of racemic electrophiles, promoting asymmetric C-C bond forming reactions by recognizing enantiotropic faces of achiral nucleophiles, and mediating a highly stereoselective protonation of carbanions. Using these trifunctional catalysts, the reaction of imines and tulipane derivatives proceeded in a highly regio-, chemo-, and stereoselective manner to produce synthetically useful yields of complex chiral amines. We believe that trifunctional catalysis can be applied in a variety of asymmetric transformations for the streamlined asymmetric synthesis of complex chiral molecules with multiple stereocenters.