Zinc deficient diet increases the toxicity of bisphenol A in rat testis.
Chittaranjan SahuAarzoo CharayaShivani SinglaDurgesh K DwivediGopabandhu JenaPublished in: Journal of biochemical and molecular toxicology (2020)
Zinc (Zn) plays an important role in maintaining the process of spermatogenesis and reproductive health. Bisphenol A (BPA), an endocrine disrupting chemical is known to be a reproductive toxicant in different animal models. The present study was designed to study the effect of two of the utmost determinative factors (Zn deficient condition and influence of toxicant BPA) on germ cell growth and overall male reproductive health in the testis, epididymis, and sperm using (a) biochemical, (b) antioxidant, (c) cellular damage, (d) apoptosis, and (e) protein expression measurements. Rats were divided into Control (normal feed and water), BPA (100 mg/kg/d), zinc deficient diet (ZDD; fed with ZDD), and BPA + ZDD for 8 weeks. Body and organ weights, sperm motility and counts, and sperm head morphology were evaluated. The histology of testes, epididymides, and prostate was investigated. Testicular deoxyribonucleic acid (DNA) damage was evaluated by Halo and Comet assay, apoptosis of sperm and testes were quantified by TUNEL assay. Serum protein electrophoretic patterns and testicular protein expressions such as Nrf-2, catalase, PCNA, and Keap1 were analyzed by Western blot analysis. The results showed that BPA significantly increased the testicular, epididymal, and prostrate toxicity in dietary Zn deficient condition due to testicular hypozincemia, hypogonadism, increased cellular and DNA damage, apoptosis, as well as perturbations in protein expression.