Towards a Wearable Feminine Hygiene Platform for Detection of Invasive Fungal Pathogens via Gold Nanoparticle Aggregation.
Kimberley ClackMohamed SallamCarney MathesonSerge MuyldermansNam-Trung NguyenPublished in: Micromachines (2024)
Candida albicans is an opportunistic fungus that becomes pathogenic and problematic under certain biological conditions. C. albicans may cause painful and uncomfortable symptoms, as well as deaths in immunocompromised patients. Therefore, early detection of C. albicans is essential. However, conventional detection methods are costly, slow, and inaccessible to women in remote or developing areas. To address these concerns, we have developed a wearable and discrete naked-eye detectable colorimetric platform for C. albicans detection. With some modification, this platform is designed to be directly adhered to existing feminine hygiene pads. Our platform is rapid, inexpensive, user-friendly, and disposable and only requires three steps: (i) the addition of vaginal fluid onto sample pads; (ii) the addition of gold nanoparticle gel and running buffer, and (iii) naked eye detection. Our platform is underpinned by selective thiolated aptamer-based recognition of 1,3-β-D glucan molecules-a hallmark of C. albicans cell walls. In the absence of C. albicans , wearable sample pads turn bright pink. In the presence of C. albicans , the wearable pads turn dark blue due to significant nanoparticle target-induced aggregation. We demonstrate naked-eye colorimetric detection of 4.4 × 10 6 C. albicans cells per ml and nanoparticle stability over a pH range of 3.0-8.0. We believe that this proof-of-concept platform has the potential to have a significant impact on women's health globally.
Keyphrases
- candida albicans
- loop mediated isothermal amplification
- sensitive detection
- biofilm formation
- label free
- high throughput
- gold nanoparticles
- real time pcr
- end stage renal disease
- public health
- healthcare
- chronic kidney disease
- polycystic ovary syndrome
- single cell
- type diabetes
- pregnant women
- adipose tissue
- induced apoptosis
- cell proliferation
- prognostic factors
- skeletal muscle
- intensive care unit
- escherichia coli
- oxidative stress
- multidrug resistant
- quantum dots
- high intensity
- peritoneal dialysis
- climate change
- diabetic rats
- health information