Oxidative stress resistance as a factor in aging: evidence from an extended longevity phenotype of Drosophila melanogaster.
Deepashree SheshadriS NivedithaT ShivanandappaS R RameshPublished in: Biogerontology (2019)
Longevity of a species is a multifactorial quantitative trait influenced by genetic background, sex, age and environment of the organism. Extended longevity phenotypes (ELP) from experimental evolution in the laboratory can be used as model systems to investigate the mechanisms underlying aging and senescence. ELPs of Drosophila are correlated with various life history attributes such as resistance to environmental stressors (starvation, desiccation, cold and paraquat), developmental time, biochemical defenses, etc. The association between oxidative stress resistance and longevity is not clear and ELPs offer an opportunity to examine the role of oxidative stress resistance in longevity. Here, we have investigated the hypothesis that enhanced oxidative stress resistance and elevated antioxidant defense system play a positive role in longevity using an ELP of Drosophila melanogaster. An ELP of D. melanogaster isolated and characterized in our laboratory through artificial selection (inbred laboratory strain of Oregon K) is employed in this study. Our ELP, named as long lifespan (LLS) flies, shows marked extension in lifespan when compared to the progenitor population (normal lifespan, NLS) and makes a suitable model to study the role of mitochondrial genome in longevity because of its least heterogeneity. In this study, sensitivity to ethanol with age was employed as a measure of resistance to oxidative stress in NLS and LLS flies. Effect of age and oxidative stress on longevity was examined by employing NLS and LLS flies of different age groups against ethanol-induced oxidative stress. Results show that the lower mortality against ethanol was associated with enhanced oxidative stress resistance, higher antioxidant defenses, lower reactive oxygen species (ROS) levels, enhanced alcohol dehydrogenase activity and better locomotor ability attributes of LLS flies. In addition, age-related changes like locomotor impairments, decreased antioxidant defenses, higher ROS levels and sensitivity to oxidative stress were delayed in LLS flies when compared to NLS. Our study supports the hypothesis that higher oxidative stress resistance and enhanced antioxidant defenses are significant factors in extending longevity.
Keyphrases
- oxidative stress
- drosophila melanogaster
- dna damage
- diabetic rats
- ischemia reperfusion injury
- induced apoptosis
- reactive oxygen species
- genome wide
- spinal cord injury
- anti inflammatory
- cell death
- nitric oxide
- climate change
- type diabetes
- high resolution
- endothelial cells
- gene expression
- dna methylation
- signaling pathway
- single molecule