Intercalated water mediated electromechanical response of graphene oxide films on flexible substrates.
Lavudya DevendarM R ShijeeshTushar SakorikarKolla Lakshmi GanapathiManu JaiswalPublished in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
The confinement of water between sub-nanometer bounding walls of layered two-dimensional materials has generated tremendous interest. Here, we examined the influence of confined water on the mechanical and electromechanical response of graphene oxide films, prepared with variable oxidative states, casted on polydimethylsiloxane substrates. These films were subjected to uniaxial strain under controlled humid environments (5 to 90% RH), while dc transport studies were performed in tandem. Straining resulted in the formation of quasi-periodic linear crack arrays. The extent of water intercalation determined the density of cracks formed in the system thereby, governing the electrical conductance of the films under strain. The crack density at 5% strain, varied from 0 to 3.5 cracks mm-1for hydrated films and 8 to 22 cracks mm-1for dry films, across films with different high oxidative states. Correspondingly, the overall change in the electrical conductance at 5% strain was observed to be ∼5 to 20 folds for hydrated films and ∼20 to 35 folds for the dry films. The results were modeled with a decrease in the in-plane elastic modulus of the film upon water intercalation, which was attributed to the variation in the nature of hydrogen bonding network in graphene oxide lamellae.