pHusion: A robust and versatile toolset for automated detection and analysis of exocytosis.
Ellen C O'ShaughnessyMable LamSamantha E RykenTheresa WiesnerKimberly LukasikJ Bradley ZucheroChristophe LeterrierDavid AdalsteinssonStephanie L GuptonPublished in: Journal of cell science (2024)
Exocytosis is a fundamental process used by eukaryotes to regulate the composition of the plasma membrane and facilitate cell-cell communication. To investigate exocytosis in neuronal morphogenesis, previously we developed computational tools with a graphical user interface to enable the automatic detection and analysis of exocytic events from fluorescence timelapse images. Though these tools were useful, we found the code was brittle and not easily adapted to different experimental conditions. Here we developed and validated a robust and versatile toolkit, named pHusion, for the analysis of exocytosis written in ImageTank, a graphical programming language that combines image visualization and numerical methods. We tested this method using a variety of imaging modalities and pH-sensitive fluorophores, diverse cell types, and various exocytic markers to generate a flexible and intuitive package. We show that VAMP3-mediated exocytosis occurs 30-times more frequently in melanoma cells compared with primary oligodendrocytes, that VAMP2-mediated fusion events in mature rat hippocampal neurons are longer lasting than those in immature murine cortical neurons, and that exocytic events are clustered in space yet random in time in developing cortical neurons.
Keyphrases