Login / Signup

Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles.

Lixin XieYaqian LiuShichang XuWen Zhang
Published in: Membranes (2023)
The surface modification of reverse osmosis (RO) membranes to improve their anti-biofouling properties is gaining increased attention. Here, we modified the polyamide brackish water reverse osmosis (BWRO) membrane via the biomimetic co-deposition of catechol (CA)/tetraethylenepentamine (TEPA) and in situ growth of Ag nanoparticles. Ag ions were reduced into Ag nanoparticles (AgNPs) without extraneous reducing agents. The hydrophilic property of the membrane was improved, and the zeta potential was also increased after the deposition of poly (catechol/polyamine) and AgNPs. Compared with the original RO membrane, the optimized PCPA3-Ag10 membrane showed a slight reduction in water flux, and the salt rejection declined, but enhanced anti-adhesion and anti-bacterial activities were observed. The FDR t of the PCPA3-Ag10 membranes during the filtration of BSA, SA and DTAB solution were 5.63 ± 0.09%, 18.34 ± 0.33% and 34.12 ± 0.15%, respectively, much better than those of the original membrane. Moreover, the PCPA3-Ag10 membrane exhibited a 100% reduction in the number of viable bacteria (B. subtilis and E. coli) inoculated on the membrane. The stability of the AgNPs was also high enough, and these results verify the effectiveness of poly (catechol/polyamine) and the AgNP-based modification strategy for the control of fouling.
Keyphrases
  • quantum dots
  • highly efficient
  • systematic review
  • escherichia coli
  • silver nanoparticles
  • cystic fibrosis
  • mass spectrometry
  • simultaneous determination
  • walled carbon nanotubes
  • bone regeneration