Login / Signup

Gnotobiotic zebrafish microbiota display inter-individual variability affecting host physiology.

Emmanuel E AdadeRebecca J StevickDavid Pérez-PascualJean-Marc GhigoAlex M Valm
Published in: bioRxiv : the preprint server for biology (2023)
Gnotobiotic animal models reconventionalized under controlled laboratory conditions with multi-species bacterial communities are commonly used to study host-microbiota interactions under presumably more reproducible conditions than conventional animals. The usefulness of these models is however limited by inter-animal variability in bacterial colonization and our general lack of understanding of the inter-individual fluctuation and spatio-temporal dynamics of microbiota assemblies at the micron to millimeter scale. Here, we show underreported variability in gnotobiotic models by analyzing differences in gut colonization efficiency, bacterial composition, and host intestinal mucus production between conventional and gnotobiotic zebrafish larvae re-conventionalized with a mix of 9 bacteria isolated from conventional microbiota. Despite similar bacterial community composition, we observed high variability in the spatial distribution of bacteria along the intestinal tract in the reconventionalized model. We also observed that, whereas bacteria abundance and intestinal mucus per fish were not correlated, reconventionalized fish had lower intestinal mucus compared to conventional animals, indicating that the stimulation of mucus production depends on the microbiota composition. Our findings, therefore, suggest that variable colonization phenotypes affect host physiology and impact the reproducibility of experimental outcomes in studies that use gnotobiotic animals. This work provides insights into the heterogeneity of gnotobiotic models and the need to accurately assess re-conventionalization for reproducibility in host-microbiota studies.
Keyphrases
  • skeletal muscle
  • adipose tissue
  • case control
  • antibiotic resistance genes