The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer.
Ingeborg van den BergTimo F W SoeterikErik J R J van der HoevenBart ClaassenWyger M BrinkDiederik J H BaasJ P Michiel SedelaarLizette HeineJim TolJochem R N van der Voort van ZypCornelis A T van den BergRoderick C N van den BerghJean-Paul A van BastenHarm H E van MelickPublished in: Cancers (2023)
Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.
Keyphrases
- artificial intelligence
- prostate cancer
- radical prostatectomy
- contrast enhanced
- machine learning
- magnetic resonance imaging
- deep learning
- big data
- robot assisted
- magnetic resonance
- end stage renal disease
- climate change
- lymph node metastasis
- computed tomography
- healthcare
- diffusion weighted imaging
- ejection fraction
- chronic kidney disease
- adverse drug
- loop mediated isothermal amplification
- squamous cell carcinoma
- emergency department
- patient reported outcomes
- peritoneal dialysis
- electronic health record
- sensitive detection
- label free