Login / Signup

Consequences of Incorporating Thiaproline and its Oxidized Derivatives into Collagen Triple Helices.

Tsai-Ling HsuJia-Cherng Horng
Published in: Protein science : a publication of the Protein Society (2023)
(2R)-4-thiaproline (Thp) is an analog of proline, replacing C γ in the pyrrolidine ring with sulfur. Its thiazolidine ring easily interconverts between endo and exo puckers due to a small energy barrier, which leads to destabilize polyproline helices. Collagen, composed of three polyproline II helices, mainly consists of X-Y-Gly triplets, where X is often proline and Y is frequently (2S,4R)-hydroxyproline. In this study, we incorporated Thp into either position-X or position-Y to investigate the consequences of such a replacement on the triple helix. Circular dichroism and differential scanning calorimetry analyses showed that the Thp-containing collagen-mimetic peptides (CMPs) can fold into stable triple helices, in which the substitution at position-Y exhibits a larger destabilization effect. Additionally, we also prepared the derivative peptides by oxidizing Thp in the peptide to N-formyl-cysteine or S,S-dioxide Thp. The results showed that the oxidized derivatives at position-X only slightly affect collagen stability, but those at position-Y induce a large destabilization effect. The consequences of incorporating Thp and its oxidized derivatives into CMPs are position dependent. Computational results suggested that the ease of interconversion between exo and endo puckers for Thp and the twist conformation of S,S-dioxide Thp may cause the destabilization effect at position-Y. We have revealed new insights into the impacts of Thp and its oxidized derivatives on collagen and demonstrated that Thp can be used to design collagen-related biomaterials. This article is protected by copyright. All rights reserved.
Keyphrases
  • wound healing
  • tissue engineering
  • high resolution
  • transcription factor
  • molecular dynamics simulations
  • single molecule
  • amino acid