Login / Signup

Electron Bernstein waves driven by electron crescents near the electron diffusion region.

Wenya LiD B GrahamYuri V KhotyaintsevAndris VaivadsM AndréK MinK LiuBin-Bin TangC WangK FujimotoC NorgrenS Toledo-RedondoPer-Arne LindqvistR E ErgunRoy B TorbertA C RagerJ C DorelliD J GershmanB L GilesB LavraudFerdinand PlaschkeW MagnesOlivier Le ContelC T RussellJames L Burch
Published in: Nature communications (2020)
The Magnetospheric Multiscale (MMS) spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth's magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to thermalize and diffuse electrons around the EDR. The EBWs contribute to the cross-field diffusion of the electron-scale boundary of the Hall current reversal near the EDR.
Keyphrases
  • solar cells
  • electron microscopy