Login / Signup

Tailoring the Time-Averaged Structure for Polarization-Sensitive Chiral Perovskites.

Chan Uk LeeSunihl MaJihoon AhnJi-Hoon KyhmJeiwan TanHyungsoo LeeGyumin JangYoung Sun ParkJuwon YunJunwoo LeeJaehyun SonJi-Sang ParkJooho Moon
Published in: Journal of the American Chemical Society (2022)
Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W -1 .
Keyphrases
  • solar cells
  • capillary electrophoresis
  • magnetic resonance
  • ionic liquid
  • solid state
  • molecular dynamics
  • mass spectrometry
  • high resolution
  • computed tomography
  • molecular dynamics simulations