Login / Signup

An examination of phonon-inelastic molecule-metal scattering using reduced density matrix and stochastic wave packet methods.

Bret Jackson
Published in: The Journal of chemical physics (2023)
We explore the application of reduced density matrix-based approaches to molecules interacting with the lattice vibrations of metals, an interaction responsible for the temperature dependence of many of the fundamental steps of catalysis. We avoid the use of simple models for the bath and instead use density functional theory to compute all molecule-phonon interactions and the properties of the lattice phonons, for methane scattering from Ir(111). We find that while the large metal mass leads to long bath correlation times, these are not significantly longer than the time over which the reduced density matrix changes due to interactions with the bath. We show that the neglect of memory is reasonable and the use of the Redfield equation is justified. We also show how the commonly used rotating wave approximation is far too severe for this scattering problem. A less restrictive approximation that is nearly exact for our system gives an equation of motion in the Lindblad form. As a result, the Monte Carlo wave packet methods can be used to describe gas-phonon scattering, guaranteeing positivity, and with all couplings derived from first-principles.
Keyphrases
  • monte carlo
  • density functional theory
  • molecular dynamics
  • health risk
  • drinking water