Comparison of In-Plane Stress Development in Sol-Gel- and Nanoparticle-Derived Mesoporous Metal Oxide Thin Films.
Pascal CopKevin HessSebastian WernerRafael MeinuschBernd Michael SmarslyHiromitsu KozukaPublished in: Langmuir : the ACS journal of surfaces and colloids (2019)
By using an evaporation-induced self-assembly (EISA) process, mesoporous metal oxide thin films are prepared via molecular precursors undergoing a sol-gel transition or by using nanoparticle dispersions as the starting materials. Both methods are employed together with PIB50-b-PEO45 as the structure-directing agent to produce porous TiO2 and ZrO2 thin films with spherical mesopores of around 14 nm in diameter. These nanoparticle- and sol-gel-derived films were investigated in terms of the intrinsic in-plane stress development during the heat treatment up to 500 °C to evaluate the impact of solvent evaporation, template decomposition and crystallization on the mechanical state of the film. The investigation revealed the lowest intrinsic stress for the nanoparticle-derived mesoporous film, which is assigned to the combination of the relaxing effects of the utilized diblock copolymer and the interparticular gaps between the precrystalline nanoparticles. Furthermore, the residual in-plane stress was studied after annealing steps ranging from 300 to 1000 °C and cooling down to room temperature. Here, TiO2 nanoparticle-derived mesoporous films possess a lower residual stress than the sol-gel-derived mesoporous films, while in the case of ZrO2 films, sol-gel-derived coatings reveal the smallest residual stress. The latter is based on the lower thermal expansion coefficient of the dominant monoclinic crystal phase compared to that of the silicon substrate. Hence, the present crystal structure has a strong influence on the mechanical state. The observation in this study helps to further understand the stress-related mechanical properties and the formation of mesoporous metal oxides.