Feasibility study to assess canagliflozin distribution and sodium-glucose co-transporter 2 occupancy using [ 18 F]Canagliflozin in patients with type 2 diabetes.
Sjoukje van der HoekAntoon Tm WillemsenTon VisserAndre HeeresDouwe Johannes MulderReinoud Ph BokkersRiemer Hja SlartPhilip H ElsingaHiddo Jl HeerspinkJasper StevensPublished in: Clinical pharmacology and therapeutics (2023)
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, including canagliflozin, reduce the risk of cardiovascular and kidney outcomes in patients with and without type 2 diabetes, albeit with a large inter-individual variation. The underlying mechanisms for this variation in response might be attributed to differences in SGLT2 occupancy, resulting from individual variation in plasma and tissue drug exposure and receptor availability. We performed a feasibility study for the use of [ 18 F]Canagliflozin positron emission tomography (PET) imaging to determine the association between clinical canagliflozin doses and SGLT2 occupancy in patients with type 2 diabetes. We obtained two 90-min dynamic PET scans with diagnostic intravenous [ 18 F]Canagliflozin administration and a full kinetic analysis in seven patients with type 2 diabetes. Patients received 50, 100 or 300mg oral canagliflozin (n=2:4:1) 2.5 hours before the second scan. Canagliflozin pharmacokinetics and urinary glucose excretion were measured. The apparent SGLT2 occupancy was derived from the difference between the apparent volume of distribution of [ 18 F]Canagliflozin in the baseline and post-drug PET scans. Individual canagliflozin area under the curve from oral dosing until 24-hours (AUC P0-24h ) varied largely (range 1715-25747 μg/L*h, mean 10580 μg/L*h) and increased dose dependently with mean values of 4543, 6525 and 20012 μg/L*h for 50, 100 and 300mg respectively (P=0.046). SGLT2 occupancy ranged between 65 and 87%, but did not correlate with canagliflozin dose, plasma exposure or urinary glucose excretion. We report the feasibility of [ 18 F]Canagliflozin PET imaging to determine canagliflozin kidney disposition and SGLT2 occupancy. This suggests the potential of [ 18 F]Canagliflozin as a tool to visualize and quantify clinically SGLT2 tissue binding.
Keyphrases