Login / Signup

Cortical recruitment determines learning dynamics and strategy.

Sebastian CeballoJacques BourgAlexandre KempfZuzanna PiwkowskaAurélie DaretPierre PinsonThomas DeneuxSimon RumpelBrice Bathellier
Published in: Nature communications (2019)
Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned event. Here, we identify sounds of equal intensity and perceptual detectability, which due to their spectro-temporal content recruit different levels of population activity in mouse auditory cortex. When using these sounds as cues in a Go/NoGo discrimination task, the degree of cortical recruitment matches the salience parameter of a reinforcement learning model used to analyze learning speed. We test an essential prediction of this model by training mice to discriminate light-sculpted optogenetic activity patterns in auditory cortex, and verify that cortical recruitment causally determines association or overshadowing of the stimulus components. This demonstrates that cortical recruitment underlies major aspects of stimulus salience during reinforcement learning.
Keyphrases
  • functional connectivity
  • working memory
  • hearing loss
  • high fat diet induced
  • virtual reality
  • wild type