Login / Signup

DFT Studies on cis-1,4-Polymerization of Dienes Catalyzed by a Cationic Rare-Earth Metal Complex Bearing an Ancillary PNP Ligand.

Xingbao WangXiaohui KangGuangli ZhouJingping QuZhaomin HouYi Luo
Published in: Polymers (2017)
Dnsity functional theory (DFT) calculations have been carried out for the highly selective cis-1,4-polymerization of butadiene catalyzed by a cationic rare-earth metal complex bearing an ancillary PNP ligand. It has been found that the chain initiation and propagation of butadiene polymerization occurs via the favorable cis-1,4-insertion route. The trans-1,4 and 1,2-insertion are unfavorable both kinetically and thermodynamically. The chain growth follows the π-allyl-insertion mechanism. The analyses of energy decomposition of transition states indicate that the likelihood of rival insertion pathways is predominantly controlled by the interaction energy of butadiene with a metal center and the deformation energy of butadiene moiety. The electronic factor of the central metal has a decisive influence on the cis- vs. trans-insertion and the regioselectivity (cis-1,4- vs. cis-1,2-insertion) is mainly determined by steric hindrance. Tetrahydrofuran (THF) coordination made monomer insertion less favorable compared with THF-free case and had more noticeable impact on the trans-monomer insertion compared with the cis case. During the chain propagation, cis-insertion of monomer facilitates THF de-coordination and the THF molecule could therefore dissociate from the central metal.
Keyphrases
  • density functional theory
  • mass spectrometry
  • room temperature
  • molecular dynamics
  • high resolution
  • molecularly imprinted
  • liquid chromatography
  • tandem mass spectrometry