Login / Signup

Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females.

Sidney Abou SawanNathan HodsonPaul BabitsJulia M MalowanyDinesh A KumbhareDaniel R Moore
Published in: Journal of applied physiology (Bethesda, Md. : 1985) (2021)
Satellite cells (SC) play an integral role in the recovery from skeletal muscle damage and supporting muscle hypertrophy. Acute resistance exercise typically elevates type I and type II SC content 24-96 h post exercise in healthy young males, although comparable research in females is lacking. We aimed to elucidate whether sex-based differences exist in fiber type-specific SC content after resistance exercise in the untrained (UT) and trained (T) states. Ten young males (23.0 ± 4.0 yr) and females (23.0 ± 4.8 yr) completed an acute bout of resistance exercise before and after 8 wk of whole body resistance training. Muscle biopsies were taken from the vastus lateralis immediately before and 24 and 48 h after each bout to determine SC and myonuclear content by immunohistochemistry. Males had greater SC associated with type II fibers (P ≤ 0.03). There was no effect of acute resistance exercise on SC content in either fiber type (P ≥ 0.58) for either sex; however, training increased SC in type II fibers (P < 0.01) irrespective of sex. The change in mean 0-48 h type II SC was positively correlated with muscle fiber hypertrophy in type II fibers (r = 0.47; P = 0.035). Furthermore, the change in myonuclei per fiber was positively correlated with type I and type II fiber hypertrophy (both r = 0.68; P < 0.01). Our results suggest that SC responses to acute and chronic resistance exercise are similar in males and females and that SC and myonuclear accretion is related to training-induced muscle fiber hypertrophy.NEW & NOTEWORTHY We demonstrate that training-induced increase in SC content in type II fibers and myonuclear content in type I and II fibers is similar between males and females. Furthermore, these changes are related to the extent of muscle fiber hypertrophy. Thus, SC and myonuclear accretion appear to contribute to muscle hypertrophy irrespective of sex, highlighting the importance of these muscle stem cells in human skeletal muscle growth.
Keyphrases