A unified thermostat scheme for efficient configurational sampling for classical/quantum canonical ensembles via molecular dynamics.
Zhijun ZhangXinzijian LiuZifei ChenHaifeng ZhengKangyu YanJian LiuPublished in: The Journal of chemical physics (2018)
We show a unified second-order scheme for constructing simple, robust, and accurate algorithms for typical thermostats for configurational sampling for the canonical ensemble. When Langevin dynamics is used, the scheme leads to the BAOAB algorithm that has been recently investigated. We show that the scheme is also useful for other types of thermostats, such as the Andersen thermostat and Nosé-Hoover chain, regardless of whether the thermostat is deterministic or stochastic. In addition to analytical analysis, two 1-dimensional models and three typical real molecular systems that range from the gas phase, clusters, to the condensed phase are used in numerical examples for demonstration. Accuracy may be increased by an order of magnitude for estimating coordinate-dependent properties in molecular dynamics (when the same time interval is used), irrespective of which type of thermostat is applied. The scheme is especially useful for path integral molecular dynamics because it consistently improves the efficiency for evaluating all thermodynamic properties for any type of thermostat.