Insulin resistance and pancreatic β-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H 2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet β-cell and enhanced pancreatic β-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.
Keyphrases
- insulin resistance
- oxidative stress
- type diabetes
- glycemic control
- single cell
- cell therapy
- metabolic syndrome
- high fat diet induced
- stem cells
- adipose tissue
- mesenchymal stem cells
- high fat diet
- polycystic ovary syndrome
- mental health
- anti inflammatory
- dna damage
- drug delivery
- bone marrow
- cancer therapy
- highly efficient
- combination therapy
- drug release
- replacement therapy
- visible light
- diabetic rats