Login / Signup

Short-chain mono-carboxylates as negative modulators of allosteric transitions in Gloeobacter violaceus ligand-gated ion channel, and impact of a pre-β5 strand (Loop Ω) double mutation on crotonate, not butyrate effect.

Catherine Van RenterghemÁkos NemeczKarima MedjebeurPierre-Jean Corringer
Published in: Physiological reports (2024)
Using the bacterial proton-activated pentameric receptor-channel Gloeobacter violaceus ligand-gated ion channel (GLIC): (1) We characterize saturated, mono-carboxylates as negative modulators of GLIC (as previously shown for crotonate; Alqazzaz et al., Biochemistry, 2016, 55, 5947). Butyrate and crotonate have indistinguishable properties regarding negative modulation of wt GLIC. (2) We identify a locus in the pre-β5 strand (Loop Ω) whose mutation inverses the effect of the mono-carboxylate crotonate from negative to positive modulation of the allosteric transitions, suggesting an involvement of the pre-β5 strand in coupling the extracellular orthotopic receptor to pore gating. (3) As an extension to the previously proposed "in series" mechanism, we suggest that a orthotopic/orthosteric site-vestibular site-Loop Ω-β5-β6 "sandwich"-Pro-Loop/Cys-Loop series may be an essential component of orthotopic/orthosteric compound-elicited gating control in this pentameric ligand-gated ion channel, on top of which compounds targeting the vestibular site may provide modulation.
Keyphrases
  • small molecule
  • transcription factor
  • cancer therapy
  • hearing loss