Login / Signup

Halogen-Free π $\upi$ -Conjugated Polymers Based on Thienobenzobisthiazole for Efficient Nonfullerene Organic Solar Cells: Rational Design for Achieving High Backbone Order and High Solubility.

Naoya NakaoMasahiko SaitoTsubasa MikieTakumi IshikawaJihun JeonHyung Do KimHideo OhkitaAkinori SaekiItaru Osaka
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022)
In π $\upi$ -conjugated polymers, a highly ordered backbone structure and solubility are always in a trade-off relationship that must be overcome to realize highly efficient and solution-processable organic photovoltaics (OPVs). Here, it is shown that a π $\upi$ -conjugated polymer based on a novel thiazole-fused ring, thieno[2',3':5,6]benzo[1,2-d:4,3-d']bisthiazole (TBTz) achieves both high backbone order and high solubility due to the structural feature of TBTz such as the noncovalent interlocking of the thiazole moiety, the rigid and bent-shaped structure, and the fused alkylthiophene ring. Furthermore, based on the electron-deficient nature of these thiazole-fused rings, the polymer exhibits deep HOMO energy levels, which lead to high open-circuit voltages (V OC s) in OPV cells, even without halogen substituents that are commonly introduced into high-performance polymers. As a result, when the polymer is combined with a typical nonfullerene acceptor Y6, power conversion efficiencies of reaching 16% and V OC s of more than 0.84 V are observed, both of which are among the top values reported so far for "halogen-free" polymers. This study will serve as an important reference for designing π $\upi$ -conjugated polymers to achieve highly efficient and solution-processable OPVs.
Keyphrases
  • solar cells
  • highly efficient
  • photodynamic therapy
  • machine learning
  • signaling pathway
  • deep learning
  • neural network
  • pi k akt