Login / Signup

Understanding the Stability of Etched or Platinized p-GaInP Photocathodes for Solar-Driven H2 Evolution.

Weilai YuJames L YoungTodd G DeutschNathan S Lewis
Published in: ACS applied materials & interfaces (2021)
The long-term stability in acidic or alkaline aqueous electrolytes of p-Ga0.52In0.48P photocathodes, with a band gap of ∼1.8 eV, for the solar-driven hydrogen-evolution reaction (HER) has been evaluated from a thermodynamic, kinetic, and mechanistic perspective. At either pH 0 or pH 14, etched p-GaInP electrodes corroded cathodically under illumination and formed metallic In0 on the photoelectrode surface. In contrast, under the same conditions, electrodeposition of Pt facilitated the HER kinetics and stabilized p-GaInP/Pt photoelectrodes against such cathodic decomposition. When held at 0 V versus the reversible hydrogen electrode, p-GaInP/Pt electrodes in either pH = 0 or pH = 14 exhibited stable current densities (J) of ∼-9 mA cm-2 for hundreds of hours under simulated 1 sun illumination. During the stability tests, the current density-potential (J-E) characteristics of the p-GaInP/Pt photoelectrodes degraded due to pH-dependent changes in the surface chemistry of the photocathode. This work provides a fundamental understanding of the stability and corrosion mechanisms of p-GaInP photocathodes that constitute a promising top light absorber for tandem solar-fuel generators.
Keyphrases
  • ionic liquid
  • magnetic resonance
  • solid state
  • pet ct
  • reduced graphene oxide
  • risk assessment
  • gold nanoparticles
  • drug discovery
  • anaerobic digestion
  • contrast enhanced