Login / Signup

Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars Bioregenerative Life Support Systems?

Antonio Giandonato CaporaleRoberta ParadisoGreta LiuzziNafiou ArounaStefania De PascalePaola Adamo
Published in: Plants (Basel, Switzerland) (2022)
Higher plants will play a key role in human survival in Space, being able to regenerate resources and produce fresh food. However, the creation of a fertile substrate based on extra-terrestrial soils is still a challenge for space cultivation. We evaluated the adaptability of soybean ( Glycine max (L.) Merr.) cultivar 'Pr91M10' to three substrates, the Mojave Mars regolith Simulant MMS-1, alone (R100), and in a mixture with blond sphagnum peat at two different volumes, 85:15 (R85P15) and 70:30 (R70P30), in plants directly sown on the substrates or transplanted after sowing on peat. The low pH of peat (4.34) allowed the mitigation of the alkalinity of the Mars regolith simulant (pH 8.86), lowering the initial pH to neutral (6.98, R85P15), or subacid to neutral (6.33, R70P30) values. Seed germination reached the highest percentage in the shortest time in the mixture of regolith simulant with 15% of peat. The cultivation substrate did not affect the plant growth and nutritional status. However, a significant interaction between the substrate and planting method was found in several growth parameters, with the highest positive effects observed in plants resulting from direct sowing on the regolith mixture with peat.
Keyphrases
  • plant growth
  • endothelial cells
  • heavy metals
  • human health
  • risk assessment
  • organic matter