Login / Signup

Relationship between (non)linear phase II pulmonary oxygen uptake kinetics with skeletal muscle oxygenation and age in 11-15 year olds.

Brynmor C BreeseZoe Louise SaynorAlan Robert BarkerNeil ArmstrongCraig Anthony Williams
Published in: Experimental physiology (2019)
This study investigated in 19 male youths (mean age: 13.6 ± 1.1 years, range: 11.7-15.7 years) the relationship between pulmonary oxygen uptake ( V ̇ O 2 ) and muscle deoxygenation kinetics during moderate- and very heavy-intensity 'step' cycling initiated from unloaded pedalling (i.e. U → M and U → VH) and moderate to very heavy-intensity step cycling (i.e. M → VH). Pulmonary V ̇ O 2 was measured breath-by-breath along with the tissue oxygenation index (TOI) of the vastus lateralis using near-infrared spectroscopy. There were no significant differences in the phase II time constant ( τ V ̇ O 2 p ) between U → M and U → VH (23 ± 6 vs. 25 ± 7 s; P = 0.36); however, the τ V ̇ O 2 p was slower during M → VH (42 ± 16 s) compared to other conditions (P < 0.001). Quadriceps TOI decreased with a faster (P < 0.01) mean response time (MRT; i.e. time delay + τ) during U → VH (14 ± 2 s) compared to U → M (22 ± 4 s) and M → VH (20 ± 6 s). The difference (Δ) between the τ V ̇ O 2 p and MRT-TOI was greater during U → VH compared to U → M (12 ± 7 vs. 2 ± 7 s, P < 0.001) and during M → VH (23 ± 15 s) compared to other conditions (P < 0.02), suggesting an increased proportional speeding of fractional O2 extraction. The slowing of the τ V ̇ O 2 p during M → VH relative to U → M and U → VH correlated positively with chronological age (r = 0.68 and 0.57, respectively, P < 0.01). In youths, 'work-to-work' transitions slowed microvascular O2 delivery-to-O2 utilization with alterations in phase II V ̇ O 2 dynamics accentuated between the ages of 11 and 15 years.
Keyphrases