No trait anxiety influences on early and late differential neuronal responses to aversively conditioned faces across three different tasks.
Sebastian SchindlerJana HeinemannMaximilian BruchmannRobert MoeckThomas StraubePublished in: Cognitive, affective & behavioral neuroscience (2022)
The human brain's ability to quickly detect dangerous stimuli is crucial in selecting appropriate responses to possible threats. Trait anxiety has been suggested to moderate these processes on certain processing stages. To dissociate such different information-processing stages, research using classical conditioning has begun to examine event-related potentials (ERPs) in response to fear-conditioned (CS +) faces. However, the impact of trait anxiety on ERPs to fear-conditioned faces depending on specific task conditions is unknown. In this preregistered study, we measured ERPs to faces paired with aversive loud screams (CS +) or neutral sounds (CS -) in a large sample (N = 80) under three different task conditions. Participants had to discriminate face-irrelevant perceptual information, the gender of the faces, or the CS category. Results showed larger amplitudes in response to aversively conditioned faces for all examined ERPs, whereas interactions with the attended feature occurred for the P1 and the early posterior negativity (EPN). For the P1, larger CS + effects were observed during the perceptual distraction task, while the EPN was increased for CS + faces when deciding about the CS association. Remarkably, we found no significant correlations between ERPs and trait anxiety. Thus, fear-conditioning potentiates all ERP amplitudes, some processing stages being further modulated by the task. However, the finding that these ERP differences were not affected by individual differences in trait anxiety does not support theoretical accounts assuming increased threat processing or reduced threat discrimination depending on trait anxiety.