Login / Signup

Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects.

Eleanor K AshworthMark H StockettChristina KjærPhilip C Bulman PageStephen R MeechSteen Brøndsted NielsenJames N Bull
Published in: The journal of physical chemistry. A (2022)
The photophysics of green fluorescent protein (GFP) and red Kaede fluorescent protein (rKFP) are defined by the intrinsic properties of the light-absorbing chromophore and its interaction with the protein binding pocket. This work deploys photodissociation action spectroscopy to probe the absorption profiles for a series of synthetic GFP and rKFP chromophores as the bare anions and as complexes with the betaine zwitterion, which is assumed as a model for dipole microsolvation. Electronic structure calculations and energy decomposition analysis using Symmetry-Adapted Perturbation Theory are used to characterize gas-phase structures and complex cohesion forces. The calculations reveal a preponderance for coordination of betaine to the phenoxide deprotonation site predominantly through electrostatic forces. Calculations using the STEOM-DLPNO-CCSD method are able to reproduce absolute and relative vertical excitation energies for the bare anions and anion-betaine complexes. On the other hand, treatment of the betaine molecule with a point-charge model, in which the charges are computed from some common electron density population analysis schemes, show that just electrostatic and point-charge induction interactions are unable to account for the betaine-induced spectral shift. The present methodology could be applied to investigate cluster forces and optical properties in other gas-phase ion-zwitterion complexes.
Keyphrases