Photobiomodulation Attenuated Cognitive Dysfunction and Neuroinflammation in a Prenatal Valproic Acid-Induced Autism Spectrum Disorder Mouse Model.
Ui-Jin KimNamgue HongJin-Chul AhnPublished in: International journal of molecular sciences (2022)
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication and interaction disorders, as well as repetitive and restrictive behaviors. To date, no effective treatment strategies have been identified. However, photobiomodulation (PBM) is emerging as a promising treatment for neurological and neuropsychiatric disorders. We used mice exposed to valproic acid (VPA) as a model of ASD and found that pathological behavioral and histological changes that may have been induced by VPA were attenuated by PBM treatment. Pregnant mice that had been exposed to VPA were treated with PBM three times. Thereafter, we evaluated the offspring for developmental disorders, motor function, hyperactivity, repetitive behaviors, and cognitive impairment. PBM attenuated many of the pathological behaviors observed in the VPA-induced ASD mouse model. In addition, pathophysiological analyses confirmed that the increase in activated microglia and astrocytes observed in the VPA-induced ASD mouse model was attenuated by PBM treatment. This suggests that PBM can counteract the behavioral changes caused by neuroinflammation in ASD. Therefore, our data show that PBM has therapeutic potential and may reduce the prevalence of neurodevelopmental disorders such as ASD.
Keyphrases
- autism spectrum disorder
- mouse model
- attention deficit hyperactivity disorder
- intellectual disability
- cognitive impairment
- healthcare
- traumatic brain injury
- pregnant women
- type diabetes
- risk factors
- adipose tissue
- metabolic syndrome
- high glucose
- lps induced
- electronic health record
- lipopolysaccharide induced
- skeletal muscle
- combination therapy
- diabetic rats
- inflammatory response
- brain injury
- insulin resistance
- machine learning
- deep learning
- oxidative stress
- wound healing
- high fat diet induced
- artificial intelligence
- newly diagnosed
- data analysis