Distinct Gut Microbiota and Serum Metabolites in Response to Weight Loss Induced by Either Dairy or Exercise in a Rodent Model of Obesity.
Shyamchand MayengbamBeata MickiewiczSarah K TrottierChunlong MuDavid C WrightRaylene A ReimerHans J VogelJane ShearerPublished in: Journal of proteome research (2019)
Energy imbalance is a primary cause of obesity. While the classical approach to attenuate weight gain includes an increase in energy expenditure through exercise, dietary manipulation such as the inclusion of dairy products has also been proven effective. In the present study, we explored the potential mechanisms by which dairy and exercise attenuate weight gain in diet-induced obese rats. Male Sprague-Dawley rats were fed a high fat, high-sugar (HFHS) diet to induce obesity for 8 weeks. Rats were then further grouped into either control (HFHS + casein) or dairy diet (HFHS + nonfat skim milk) with and without treadmill exercise for 6 weeks. Serum and fresh fecal samples were collected for gut microbiota, serum metabolomics, and metallomics analysis. Diet and exercise resulted in distinct separation in both gut microbiota and serum metabolite profiles. Most intriguingly, obesogenic bacteria including Desulfovibrio and Oribacterium were reduced, and bioactive molecules such as mannose and arginine were significantly increased in the dairy group. Correlations of at least six bacterial genera with serum metal ions and metabolites were also found. Results reveal distinct impacts of dairy and exercise on the gut microbiota and in the modulation of circulating metabolites with the former primarily responsible for driving microbial alterations known to attenuate weight gain.
Keyphrases