Login / Signup

Carbonic anhydrase is not a relevant nitrite reductase or nitrous anhydrase in the lung.

Philipp A PickerodtSebastian KronfeldtMartin RussAdrian Gonzalez-LopezPhilipp LotherElvira SteinerKatja VorbrodtThilo BuschWillehad BoemkeRoland C E FrancisErik R Swenson
Published in: The Journal of physiology (2018)
The carbonic anhydrase (CA) inhibitors acetazolamide and its structurally similar analogue methazolamide prevent or reduce hypoxic pulmonary vasoconstriction (HPV) in dogs and humans in vivo, by a mechanism unrelated to CA inhibition. In rodent blood and isolated blood vessels, it has been reported that inhibition of CA leads to increased generation of nitric oxide (NO) from nitrite and vascular relaxation in vitro. We tested the physiological relevance of augmented NO generation by CA from nitrite with acetazolamide in anaesthetized pigs during alveolar hypoxia in vivo. We found that acetazolamide prevents HPV in anaesthetized pigs, as in other mammalian species. A single nebulization of sodium nitrite reduces HPV, but this action wanes in the succeeding 3 h of hypoxia as nitrite is metabolized and excreted. Pulmonary artery pressure reduction and NO formation as measured by exhaled gas concentration from inhaled sodium nitrite were not increased by acetazolamide during alveolar hypoxia. Thus, our data argue against a physiological role of carbonic anhydrase as a nitrous anhydrase or nitrite reductase as a mechanism for its inhibition of HPV in the lung and blood in vivo.
Keyphrases