In Situ Cation Intercalation in the Interlayer of Tungsten Sulfide with Overlaying Layered Double Hydroxide in a 2D Heterostructure for Facile Electrochemical Redox Activity.
Sahanaz ParvinVishwadeepa HazraAnita Gemmy FrancisSwapan K PatiSayan BhattacharyyaPublished in: Inorganic chemistry (2021)
The role of electrochemical interfaces in energy conversion and storage is unprecedented and more so the interlayers of two-dimensional (2D) heterostructures, where the physicochemical nature of these interlayers can be adjusted by cation intercalation. We demonstrate in situ intercalation of Ni2+ and Co2+ with similar ionic radii of ∼0.07 nm in the interlayer of 1T-WS2 while electrodepositing NiCo layered double hydroxide (NiCo-LDH) to create a 2D heterostructure. The extent of intercalation varies with the electrodeposition time. Electrodeposition for 90 s results in 22.4-nm-thick heterostructures, and charge transfer ensues from NiCo-LDH to 1T-WS2, which stabilizes the higher oxidation states of Ni and Co. Density functional theory calculations validate the intercalation principle where the intercalated Ni and Co d electrons contribute to the density of states at the Fermi level of 1T-WS2. Water electrolysis is taken as a representative redox process. The 90 s electrodeposited heterostructure needs the relatively lowest overpotentials of 134 ± 14 and 343 ± 4 mV for hydrogen and oxygen evolution reactions, respectively, to achieve a current density of ±10 mA/cm2 along with exceptional durability for 60 h in 1 M potassium hydroxide. The electrochemical parameters are found to correlate with enhanced mass diffusion through the cation and Cl--intercalated interlayer spacing of 1T-WS2 and the number of active sites. While 1T-WS2 is mostly celebrated as a HER catalyst in an acidic medium, with the help of intercalation chemistry, this work explores an unfound territory of this transition-metal dichalcogenide to catalyze both half-reactions of water electrolysis.
Keyphrases