Water restriction alters seed bank traits and ecology in Atlantic Forest seasonal forests under climate change.
Patrícia Borges DiasSustanis Horn KunzJosé Eduardo Macedo PezzopaneTalita Miranda Teixeira XavierJoão Paulo Fernandes ZorzanelliJoão Vitor ToledoLhoraynne Pereira GomesRodrigo Gomes GorsaniPublished in: Global change biology (2024)
The soil seed bank (SSB) is one of the key mechanisms that ensure the perpetuity of forests, but how will it behave in the scenarios projected for the future climate? Faced with this main question, still little explored in seasonal tropical forests, this study evaluated the germination, ecological attributes, and functional traits of the SSB in a seasonal forest in the Atlantic Forest. Forty-eight composite samples of the SSB were collected from 12 plots, distributed across four treatments, each with 12 replicates. The samples were placed in two climate-controlled greenhouses, establishing two environments of controlled climatic conditions, both with two levels of water, as follows: Cur: current scenario without water restriction; Cur_WR: current scenario with water restriction; RCP8.5: future scenario without water restriction; RCP8.5_WR: future scenario with water restriction. The germinants were identified, and their ecological attributes and functional traits were obtained. Leaf area and biomass production, differences in abundance, richness, and diversity were evaluated, along with analysis of variance to assess the interaction between water levels and scenarios. All ecological attributes and functional traits evaluated drastically decreased in the future projection with water restriction, with this restriction being the main component influencing this response. The increased temperature in the future scenario significantly raised water consumption compared to the current scenario. However, persistent water restrictions in the future could undermine the resilience of seasonal forests, hindering seed germination in the soil. Richness and abundance were also adversely affected by water scarcity in the future scenario, revealing a low tolerance to the projected prolonged drought. These changes found in the results could alter the overall structure of seasonal forests in the future, as well as result in the loss of the regeneration potential of the SSB due to decreased seed viability and increased seedling mortality.