Monitoring beam-quality constancy considering uncertainties associated with ionization chambers in Daily QA3 device.
Su Chul HanJihun KimMin Cheol HanKyung Hwan ChangKwangwoo ParkHo Jin KimDong Wook KimJin Sung KimPublished in: PloS one (2021)
This study evaluates the changes occurring in the X-ray energy of a linear accelerator (LINAC) using a Daily QA3 detector system. This is accomplished by comparing the Daily QA3 results against those obtained using a water phantom. The X-energy levels of a LINAC were monitored over a duration of 1 month using the Daily QA3 system. Moreover, to account for the uncertainty, the reproducibility of the Daily QA3 ionization-chamber results was assessed by performing repeated measurements (12 per day). Subsequently, the energy-monitoring results were compared with the energy-change results calculated using the water-phantom percentage depth dose (PDD) ratio. As observed, the 6- and 10-MV beams experienced average daily energy-level changes of (-0.30 ± 0.32)% and (0.05 ± 0.38)%, respectively, during repeated measurements. The corresponding energy changes equaled (-0.30 ± 0.55)% and (-0.05 ± 0.48)%, respectively, when considering the measurement uncertainty. The Daily QA3 measurements performed at 6 MV demonstrated a variation of (2.15 ± 0.81)% (i.e., up to 3%). Meanwhile, the corresponding measurements performed using a water phantom demonstrated an increase in the PDD ratio from 0.577 to 0.580 (i.e., approximately 0.5%). At 10 MV, the energy variation in the Daily QA3 measurements equaled (-0.41 ± 0.82)% (i.e., within 1.5%), whereas the corresponding water phantom PDD ratio remained constant at 0.626. These results reveal that the Daily QA3 system can be used to monitor small energy changes occurring within radiotherapy machines. This demonstrates its potential for use as a secondary system for monitoring energy changes as part of the daily quality-assurance workflow.