Login / Signup

Comparative Toxigenicity and Associated Mutagenicity of Aspergillus fumigatus and Aspergillus flavus Group Isolates Collected from the Agricultural Environment.

Caroline LanierDavid GaronNatacha HeutteValérie KientzVéronique André
Published in: Toxins (2020)
The mutagenic patterns of A. flavus, A. parasiticus and A. fumigatus extracts were evaluated. These strains of toxigenic Aspergillus were collected from the agricultural environment. The Ames test was performed on Salmonella typhimurium strains TA98, TA100 and TA102, without and with S9mix (exogenous metabolic activation system). These data were compared with the mutagenicity of the corresponding pure mycotoxins tested alone or in reconstituted mixtures with equivalent concentrations, in order to investigate the potential interactions between these molecules and/or other natural metabolites. At least 3 mechanisms are involved in the mutagenic response of these aflatoxins: firstly, the formation of AFB1-8,9-epoxide upon addition of S9mix, secondly the likely formation of oxidative damage as indicated by significant responses in TA102, and thirdly, a direct mutagenicity observed for higher doses of some extracts or associated mycotoxins, which does not therefore involve exogenously activated intermediates. Besides the identified mycotoxins (AFB1, AFB2 and AFM1), additional "natural" compounds contribute to the global mutagenicity of the extracts. On the other hand, AFB2 and AFM1 modulate negatively the mutagenicity of AFB1 when mixed in binary or tertiary mixtures. Thus, the evaluation of the mutagenicity of "natural" mixtures is an integrated parameter that better reflects the potential impact of exposure to toxigenic Aspergilli.
Keyphrases
  • ionic liquid
  • escherichia coli
  • human health
  • risk assessment
  • climate change
  • atomic force microscopy
  • ms ms
  • machine learning
  • single molecule
  • genetic diversity