Synthesis of N-Doped Mesoporous Carbon Nanorods through Nano-Confined Reaction: High-Performance Catalyst Support for Hydrogenation of Phenol Derivatives.
Xueteng LiuFei PangJianping GePublished in: Chemistry, an Asian journal (2018)
Traditional hard-template methods for the preparation of mesoporous carbon structures have been well developed, but there are difficulties associated with complete filling of the organic precursors in ordered mesochannels and exact replication of the templates. Herein, mesoporous carbon nanorods (meso-CNRs) were synthesized through thermal condensation of furfuryl alcohol followed by the nano-confined decomposition of polyfurfuryl alcohol in silica nanotubes (SiO2 NTs) with porous shells. Limited and slow release of gaseous water through the porous shells and finite polyfurfuryl precursor inside silica nanotubes are responsible for the formation of the mesoporous structures. Nitrogen can be doped into the meso-CNRs by adding guanidine hydrochloride to the precursors. The nitrogen dopant not only stabilizes the ultrasmall and active Pd nanocatalyst in the meso-CNRs but also increases the electron density of Pd and accelerates the dissociation of H2 , both of which increase the catalytic activity of the Pd catalyst in hydrogenation reactions.