Login / Signup

Azo-Stilbene and Pyridine-Amine Hybrid Multifunctional Molecules to Target Metal-Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer's Disease.

Monika RanaHong-Jun ChoHemant AryaTarun Kumar BhattKishalay BharSurabhi BhattLiviu M MiricaAnuj Kumar Sharma
Published in: Inorganic chemistry (2022)
Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with progressive neuronal cell death, and they are commonly correlated with aberrant protein misfolding and aggregation of Aβ peptides. Transition metal ions (Cu, Fe, and Zn) have been shown to promote aggregation and oxidative stress through formation of Aβ-metal complexes. In this context, integrating molecular scaffolds rationally is used here to generate multifunctional molecules as modulators for metal-induced abnormalities. This work encompasses two azo-stilbene ( AS )-derived compounds ( AS-HL1 and AS-HL2 ), the rationale behind the design, their synthesis, characterization, and metal chelation ability [Cu(II) and Zn(II)]. The molecular frameworks of the designed compounds consist of stilbene as an Aβ-interacting moiety, whereas N,N,O and N,N,N,O donor atoms are linked to generate the metal chelation moiety. Furthermore, we went on exploring their multifunctionality with respect to (w.r.t.) (i) their metal chelating capacities and (ii) their utility to modulate the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) scavenge free radicals, and (iv) inhibit the activity of acetylcholinesterase and (v) cytotoxicity. Moreover, the compounds were able to sequester Cu 2+ from the Aβ-Cu complex as studied by the UV-visible spectroscopic assay. Molecular docking studies were also performed with Aβ and acetylcholinesterase enzyme. Overall, the studies presented here qualify these molecules as promising candidates for further investigation in the quest for finding a treatment for Alzheimer's disease.
Keyphrases