A Size-Selectively Biomolecule-Immobilized Nanoprobe-Based Chemiluminescent Lateral Flow Immunoassay for Detection of Avian-Origin Viruses.
Huijin JungSung Hyeon ParkJiho LeeByeongdu LeeJinyoung ParkYoungung SeokJong-Ho ChoiMin-Gon KimChang-Seon SongJoonseok LeePublished in: Analytical chemistry (2020)
In this study, a signal-amplifiable nanoprobe-based chemiluminescent lateral flow immunoassay (CL-LFA) was developed to detect avian influenza viruses (AIV) and other contagious and fatal viral avian-origin diseases worldwide. Signal-amplifiable nanoprobes are capable of size-selective immobilization of antibodies (binding receptors) and enzymes (signal transducers) on sensitive paper-based sensor platforms. Particle structure designs and conjugation pathways conducive for antigen accessibility to maximum amounts of immobilized enzymes and antibodies have advanced. The detection limit of the CL-LFA using the signal-amplifiable nanoprobe for the nucleoprotein of the H3N2 virus was 5 pM. Sensitivity tests for low pathogenicity avian influenza H9N2, H1N1, and high pathogenicity avian influenza H5N9 viruses were conducted, and the detection limits of CL-LFA were found to be 103.5 50% egg infective dose (EID50)/mL, 102.5 EID50/mL, and 104 EID50/mL, respectively, which is 20 to 100 times lower than that of a commercial AIV rapid test kit. Moreover, CL-LFA demonstrated high sensitivity and specificity against 37 clinical samples. The signal-amplifiable probe designed in this study is a potential diagnostic probe with ultrahigh sensitivity for applications in the field of clinical diagnosis, which requires sensitive antigen detection as evidenced by enhanced signaling capacity and sensitivity of the LFAs.