Login / Signup

Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel.

Etsuko MinobeMasayuki X MoriMasaki Kameyama
Published in: The Journal of physiology (2017)
Calmodulin (CaM) plays a critical role in regulation of Cav1.2 Ca2+ channels. CaM binds to the channel directly, maintaining channel activity and regulating it in a Ca2+ -dependent manner. To explore the molecular mechanisms involved, we compared the activity of the wildtype channel (α1C) and mutant derivatives, C-terminal deleted (α1C∆) and α1C∆ linked to CaM (α1C∆CaM). These were co-expressed with β2a and α2δ subunits in HEK293 cells. In the inside-out mode, α1C and α1C∆ showed minimal open-probabilities in a basic internal solution (run-down), whereas α1C∆ with CaM and α1C∆CaM maintained detectable channel activity, confirming that CaM was necessary, but not sufficient, for channel activity. Previously, we reported that ATP was required to maintain channel activity of α1C. Unlike α1C, the mutant channels did not require ATP for activation in the early phase (3-5 min). However, α1C∆ with CaM + ATP and α1C∆CaM with ATP maintained activity, even in the late phase (after 7-9 min). These results suggested that CaM and ATP interacted dynamically with the proximal C-terminal tail of the channel and, thereby, produced channel activity. In addition, okadaic acid, a protein phosphatase inhibitor, could substitute for the effects of ATP on α1C but not on the mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels, further indicating that ATP has dual effects. One maintains phosphorylation of the channel and the other becomes apparent when the distal carboxyl-terminal tail is removed.
Keyphrases