Semiconducting CuO Nanotubes: Synthesis, Characterization, and Bifunctional Photocathodic Enzymatic Bioanalysis.
Ling ZhangYuan-Cheng ZhuYan-Yu LiangWei-Wei ZhaoJing-Juan XuHong-Yuan ChenPublished in: Analytical chemistry (2018)
This work reports the synthesis, characterization, and application of bifunctional semiconducting CuO nanotubes (NTs) electrode for innovative synergized cathodic photoelectrochemical (PEC) enzymatic bioanalysis. Specifically, CuO NTs electrode was fabricated by surface oxidation of the copper foil in an alkaline aqueous solution with (NH4)2S2O8 and then annealed in air at 200 °C. After the subsequent coupling with the model enzyme of xanthine oxidase (XOD), the resulted photocathodic enzyme biosensor exhibited good analytical performance of rapid response, high stability, and good sensitivity. Especially, due to the unique catalytic property of CuO toward H2O2, a novel enzymatic cascade design between biological catalyst (XOD as natural enzyme) and biomimetic catalyst (CuO as the peroxidase mimetics) was constructed, and the dual-catalyst system with special synergy effect could achieve the cathodic PEC guanine bioanalysis with enhanced efficiency. In the determination, the cathodic photocurrent was found to be proportional to the guanine concentration, which was different from the commonly observed O2-dependent suppression of the photocurrent. In all, such a bifunctional CuO NTs-based PEC bioassay format has not been reported. The success of this work can offer great chances for further development and implementation of novel CuO-based PEC bioanalytical systems. More importantly, the strategy proposed here could contribute to the development of an original prototype for general PEC enzymatic bioanalysis.