Login / Signup

Highly dispersed Ir/Fe nanoparticles anchored at nitrogen-doped activated pyrolytic carbon black as a high-performance OER catalyst for lead recovery.

Guosai JiangMeiling ChenYanzhi SunYufeng WuJunqing Pan
Published in: Dalton transactions (Cambridge, England : 2003) (2024)
The use of a methanesulfonic acid (MSA) electrolytic system is recommended as a green method for hydrometallurgical recovery of metallic Pb from waste lead-acid batteries (LABs), contributing to the sustainable protection of the ecosystem. Nevertheless, the system's high energy consumption is a current issue due to the substantial overpotential of the oxygen evolution reaction (OER) and competitive anodic oxidation of Pb 2+ . Herein, we propose an IrFe/nitrogen-doped pyrolytic carbon black (IrFe/NCBp) composite as a novel OER catalyst for the MSA electrolytic system, which demonstrates advanced OER catalytic efficiency and selectivity for H 2 O oxidation. This can be ascribed to the catalyst's thoughtful design, which enhances the number and uniformity of Ir and Fe species via increasing the specific surface area and employing NCBp as a sustainable substrate. The optimized IrFe/NCBp composite exhibits superior OER performance, with a low 252 mV@10 mA cm -2 overpotential and a 62 mV dec -1 Tafel slope, and excellent durability in a 1 M MSA electrolyte for 30 h operation compared to commercial Ir/C. In contrast to carbon paper (CP) and commercial Ir/C anodes, the anodic reaction of IrFe/NCBp is primarily OER-driven (97%) in 1 M MSA and 0.2 M Pb 2+ electrolyte for Pb recovery. This effectively circumvents the high potential oxidation of Pb 2+ into PbO 2 , reducing the electrolytic voltage to 488 kWh for the recovery of 1 ton Pb metal. This work provides a green, low-carbon footprint solution for the MSA electrolytic system, thereby promoting the commercialization of the hydrometallurgical Pb recovery.
Keyphrases