Construction of ZnIn 2 S 4 /CdS/PdS S-Scheme Heterostructure for Efficient Photocatalytic H 2 Production.
Guotai SunZige TaiFan LiQian YeTing WangZhiyu FangLichao JiaWei LiuHongqiang WangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2023)
It is facing a tremendous challenge to develop the desirable hybrids for photocatalytic H 2 generation by integrating the advantages of a single semiconductor. Herein, an all-sulfide ZnIn 2 S 4 /CdS/PdS heterojunction is constructed for the first time, where CdS and PdS nanoparticles anchor in the spaces of ZnIn 2 S 4 micro-flowers due to the confinement effects. The morphology engineering can guarantee rapid charge transfer owing to the short carrier migration distances and the luxuriant reactive sites provided by ZnIn 2 S 4 . The S-scheme mechanism between ZnIn 2 S 4 and CdS assisted by PdS cocatalyst is testified by in situ irradiated X-ray photoelectron spectroscopy and electron paramagnetic resonance (EPR), where the electrons and holes move in reverse driven by work function difference and built-in electric field at the interfaces. The optimal ZnIn 2 S 4 /CdS/PdS performs a glaring photocatalytic activity of 191.9 µmol h -1 (10 mg of catalyst), and the largest AQE (apparent quantum efficiency) can reach a high value of 26.26%. This work may afford progressive tactics to design multifunctional photocatalysts.