Login / Signup

Influence of insular conditions on wing phenotypic variation in two dominant mosquito vectors, Aedes albopictus and Armigeres subalbatus (Diptera: Culicidae), in the border archipelagos of Thailand.

Sedthapong LaojunNarin SontigunTanawat Chaiphongpachara
Published in: Medical and veterinary entomology (2024)
Insects geographically separated into island and mainland populations often exhibit phenotypic variations, a phenomenon known as insular conditions. These conditions can lead to rapid evolutionary changes that affect the morphological characteristics of mosquito vectors. Nevertheless, studies that specifically examine phenotype differences between island and mainland mosquito populations have been limited. In this study, wing variation in size and shape was investigated using the geometric morphometric (GM) technique in two dominant mosquito vectors, Aedes albopictus and Armigeres subalbatus, in the Ranong and Trat archipelagos of Thailand. Significant differences in average wing centroid size (CS) were found in 6 out of 15 population pairs for Ae. albopictus (p < 0.05) and in 5 population pairs for Ar. subalbatus (p < 0.05). After removing the allometric effect, canonical variate analyses (CVA) based on wing shape analysis revealed overlap across all populations for both Ae. albopictus and Ar. subalbatus. However, the statistical analysis indicated that Ar. subalbatus exhibited wing shape differences across all populations (p < 0.05), and most Ae. albopictus populations also displayed distinct wing shapes (p < 0.05), except for the populations from Chang Island and the mainland of Ranong, which showed no significant differences (p > 0.05). These findings enhance our understanding of mosquito adaptability in island regions and provide valuable data for the surveillance and monitoring of vector evolution.
Keyphrases
  • aedes aegypti
  • zika virus
  • dengue virus
  • genetic diversity
  • public health
  • machine learning
  • big data
  • dna methylation
  • electronic health record
  • gene therapy
  • case control