Login / Signup

Productivity enhancement of single-slope solar still with novel bottom finned absorber basin inserted in phase change material (PCM): techno-economic and enviro-economic analysis.

Subbarama Kousik SuraparajuSendhil Kumar Natarajan
Published in: Environmental science and pollution research international (2021)
Solar still is one of the economic and eminent ways of desalinating the available sea/brackish water into potable water. However, the distillate output from the solar still is moderate and various researches are being conducted to improve the productivity of solar still. In this research, a novel bottom finned (solid and hollow) absorber basin is designed and developed to enhance the heat transfer between absorber and phase change material (PCM) which further improves the freshwater productivity from the solar still. The results of the investigation are compared with the conventional solar still. The three single-slope solar stills considered developed for evaluating the effect of modification on the freshwater productivity are (i) conventional solar still (CSS), (ii) solar still with hollow finned absorber inserted in energy storage (SSHFES), and (c) solar still with solid finned absorber inserted in energy storage (SSSFES). The investigation results reported that the SSHFES has greater productivity when compared with the SSSFES and CSS. The freshwater productivity from the SSHFES is 4085 mL/m2 day, whereas the freshwater productivity from SSSFES and CSS is 3485 mL/m2 day and 2885 mL/m2 day, respectively. The efficiency of SSHFES and SSSFES is increased by 41.67% and 20.81% relative to the CSS. It is observed from economic analysis that the cost per liter (CPL) freshwater produced by SSHFES, SSSFES and CSS is about ₹ 2.3 ($ 0.032), ₹ 2.5 ($ 0.034), and ₹2.6 ($ 0.036), respectively. The payback periods of SSHFES, SSSFES, and CSS is 6.3 months, 6.8 months, and 7.1 months, respectively. Also, the enviroeconomic analysis conferred that the carbon credit gained from the SSHFES is $189.28 whereas SSSFES and CSS gained only $158.2 and $132.02. Based on the current study, it is observed that the solar still with hollow finned absorber inserted in energy storage (SSHFES) is effective when compared to others and it is viable for potable water production at cheaper costs.
Keyphrases
  • climate change
  • metal organic framework
  • heat stress
  • mass spectrometry
  • simultaneous determination