Login / Signup

Determination of ileal endogenous nitrogen losses and true ileal nitrogen digestibility during non-steady-state conditions of the 15 N-isotope dilution technique.

C A Carina SteendamMartin W A VerstegenWouter H Hendriks
Published in: Archives of animal nutrition (2024)
The aim was to determine ileal endogenous nitrogen losses (ENL) and true ileal N-digestibility (TD-N) under non-steady-state conditions of the 15 N-isotope dilution technique ( 15 N-IDT), using diets generating low and high ENL and compare results to those obtained under steady-state conditions. Twelve growing pigs (mean LW 22.4 kg) fitted with a post-valve T-caecum cannula were fed an enzyme-hydrolysed casein (EHC)-based diet or an EHC diet + 4% quebracho tannins (QT) and were labelled via continuous 15 N-leucine i.v . infusion or twice daily oral 15 N-leucine administration. Digesta were collected daily over three consecutive hours with blood plasma sampled on the four consecutive days after cessation of 15 N-labelling. There was a significant effect of sampling day on the dilution factor. Endogenous N losses were significantly lower for the EHC than the EHC+QT diet (2.41 vs. 8.69 g/kg DMI), while no significant effect of sampling day was observed. The TD-N of the EHC+QT diet did not differ from the TD-N of the EHC diet (95.1 vs. 92.0%). A significant effect of sampling day was observed for TD-N with day 1 and 2, being higher than day 4. Non-steady-state conditions overestimated ENL by 25-28% as compared to 3 h collections in steady-state conditions, but the relative overestimation was similar for the EHC diet as for the EHC+QT diet. TD-N did not differ significantly compared to 12 h steady-state measurements, but comparison to 3 h steady-state measurements showed that non-steady-state conditions overestimated TD-N for the EHC+QT diet by 9%. However, on day 4 this overestimation disappeared. Using the 15 N-IDT during non-steady-state conditions can provide valuable additional data on endogenous N losses and TD-N.
Keyphrases