Login / Signup

SAR.IoT: Secured Augmented Reality for IoT Devices Management.

Daniel FuentesLuís CorreiaNuno CostaArsénio ReisJoao BarrosoAntónio Pereira
Published in: Sensors (Basel, Switzerland) (2021)
Currently, solutions based on the Internet of Things (IoT) concept are increasingly being adopted in several fields, namely, industry, agriculture, and home automation. The costs associated with this type of equipment is reasonably small, as IoT devices usually do not have output peripherals to display information about their status (e.g., a screen or a printer), although they may have informative LEDs, which is sometimes insufficient. For most IoT devices, the price of a minimalist display, to output and display the device's running status (i.e., what the device is doing), might cost much more than the actual IoT device. Occasionally, it might become necessary to visualize the IoT device output, making it necessary to find solutions to show the hardware output information in real time, without requiring extra equipment, only what the administrator usually has with them. In order to solve the above, a technological solution that allows for the visualization of IoT device information in actual time, using augmented reality and a simple smartphone, was developed and analyzed. In addition, the system created integrates a security layer, at the level of AR, to secure the shown data from unwanted eyes. The results of the tests carried out allowed us to validate the operation of the solution when accessing the information of the IoT devices, verify the operation of the security layer in AR, analyze the interaction between smartphones, the platform, and the devices, and check which AR markers are most optimized for this use case. This work results in a secure augmented reality solution, which can be used with a simple smartphone, to monitor/manage IoT devices in industrial, laboratory or research environments.
Keyphrases
  • health information
  • virtual reality
  • healthcare
  • high throughput
  • climate change
  • machine learning
  • social media
  • data analysis
  • electronic health record
  • deep learning