Login / Signup

Evaluation of the Potential of Sewage Sludge Mycobiome to Degrade High Diclofenac and Bisphenol-A Concentrations.

Ulises Conejo-SaucedoAlejandro Ledezma-VillanuevaGabriela Ángeles de PazMario Herrero-CerveraConcepción CalvoElisabet Aranda
Published in: Toxics (2021)
One of the most challenging environmental threats of the last two decades is the effects of emerging pollutants (EPs) such as pharmaceutical compounds or industrial additives. Diclofenac and bisphenol A have regularly been found in wastewater treatment plants, and in soils and water bodies because of their extensive usage and their recalcitrant nature. Due to the fact of this adversity, fungal communities play an important role in being able to safely degrade EPs. In this work, we obtained a sewage sludge sample to study both the culturable and non-culturable microorganisms through DNA extraction and massive sequencing using Illumina MiSeq techniques, with the goal of finding degraders adapted to polluted environments. Afterward, degradation experiments on diclofenac and bisphenol A were performed with the best fungal degraders. The analysis of bacterial diversity showed that Dethiosulfovibrionaceae, Comamonadaceae, and Isosphaeraceae were the most abundant families. A predominance of Ascomycota fungi in the culturable and non-culturable population was also detected. Species such as Talaromyces gossypii, Syncephalastrum monosporum, Aspergillus tabacinus, and Talaromyces verruculosus had remarkable degradation rates, up to 80% of diclofenac and bisphenol A was fully degraded. These results highlight the importance of characterizing autochthonous microorganisms and the possibility of selecting native fungal microorganisms to develop tailored biotransformation technologies for EPs.
Keyphrases
  • sewage sludge
  • heavy metals
  • wastewater treatment
  • risk assessment
  • human health
  • municipal solid waste
  • cell wall
  • anaerobic digestion
  • antibiotic resistance genes
  • smoking cessation
  • ionic liquid
  • life cycle