Login / Signup

Steep-Slope Threshold Switch Enabled by Pulsed-Laser-Induced Phase Transformation.

Yunkyu ParkDaseob YoonKeisuke FukutaniRoland StaniaJunwoo Son
Published in: ACS applied materials & interfaces (2019)
Super-steep two-terminal electronic devices using NbO2, which abruptly switch from insulator to metal at a threshold voltage (Vth), offer diverse strategies for energy-efficient and high-density device architecture to overcome fundamental limitation in current electronics. However, the tight control of stoichiometry and high-temperature processing limit practical implementation of NbO2 as a component of device integration. Here, we demonstrate a facile room-temperature process that uses solid-solid phase transformation induced by pulsed laser to fabricate NbO2-based threshold switches. Interestingly, pulsed laser annealing under a reducing environment facilitates a two-step nucleation pathway (a-Nb2O5 → o-Nb2O5-δ → t-NbO2) of the threshold-enabled NbO2 phase mediated by oxygen vacancies in o-Nb2O5-δ. The laser-annealed devices with embedded NbO2 crystallites exhibit excellent threshold device performance with low off-current and high on/off current ratio. Our strategy that exploits the interactions of pulsed lasers with multivalent metal oxides can guide the development of a rational route to achieve NbO2-based threshold switches that are compatible with current semiconductor fabrication technology.
Keyphrases
  • room temperature
  • high density
  • healthcare
  • primary care
  • blood brain barrier
  • mass spectrometry