Stability Characterization of the Novel Anti-Cancer HM-10/10 HDL-Mimetic Peptide.
Michael P DempseyKatelyn E AndersenBrittney M WellsMitchell A TaylorClay L CashmanLesley B ConradClaire A KearneyMary B ConklinEmily R ViaEmily M DoeRavikiran KomirisettySusan DearbornSrinivasa Tadiparthi ReddyRobin Farias-EisnerPublished in: International journal of molecular sciences (2023)
Epithelial adenocarcinoma of the ovary and colon are associated with the highest rates of cancer-related deaths in women in the U.S. The literature supports the role of HDL-associated apolipoproteins in the treatment of cancer and other pro-inflammatory diseases. Previously, we developed a novel 20-amino acid mimetic peptide, HM-10/10, which potently inhibits tumor development and growth in colon and ovarian cancer. Here, we report the properties of HM-10/10 relative to its stability in vitro. The results demonstrated that HM-10/10 had the highest half-life in human plasma compared to plasma from other species tested. HM-10/10 demonstrated stability in human plasma and simulated gastric environment, increasing its promise as an oral pharmaceutical. However, under conditions modeling the small intestine, HM-10/10 demonstrated significant degradation, likely due to the peptidases encountered therein. Furthermore, HM-10/10 demonstrated no evidence of time-dependent drug-drug interactions, although it demonstrated CYP450 induction slightly above cutoff. As proteolytic degradation is a common limitation of peptide-based therapeutics, we are pursuing strategies to improve the stability properties of HM-10/10 by extending its bioavailability while retaining its low toxicity profile. HM-10/10 holds promise as a new agent to address the international women's health crisis of epithelial carcinomas of the ovary and colon.