Reversible Phase Transition of Robust Luminescent Hybrid Hydrogels.
Zhiqiang LiGuannan WangYige WangHuan-Rong LiPublished in: Angewandte Chemie (International ed. in English) (2018)
We report herein on remote control over a reversible phase transition of robust luminescent hybrid hydrogels as enabled by the rational selection and incorporation of photoswitches. Azobenzene units functionalized with a guanidinium group were utilized as the photoswitches and incorporated through a host-guest inclusion method involving α-cyclodextrins functionalized with 2,6-pyridinedicarboxylic acid (PDA) groups. While the guanidinium functional groups bind to the negatively charged Laponite matrix surface to connect organic and inorganic components, the PDA groups enable simultaneous coordination with different lanthanide metal ions, thus rendering the hydrogel broadly luminescent. Owing to its conformation-dependent binding behavior with α-cyclodextrin, the isomerization of azobenzene induced association or dissociation of the inclusion complexes and thus lead to a reversible photocontrolled sol↔gel phase transition of the luminescent hybrid hydrogels.